Welcome to New York Logic!

May 26 Tuesday | May 27 Wednesday | May 28 Thursday | May 29 Friday | May 30 Saturday | May 31 Sunday | Jun 1 Monday |
---|---|---|---|---|---|---|

**→** go to the Calendar

## Upcoming talks and events:

# Ultrafilters and nonstandard methods in combinatorics of numbers

In certain areas of Ramsey theory and combinatorics of numbers, diverse non-elementary methods are successfully applied, including ergodic theory, Fourier analysis, (discrete) topological dynamics, algebra in the space of ultrafilters. In this talk I will survey some recent results that have been obtained by using tools from mathematical logic, namely ultrafilters and nonstandard models of the integers.

On the side of Ramsey theory, I will show how the hypernatural numbers of nonstandard analysis can play the role of ultrafilters, and provide a convenient setting for the study of partition regularity problems of diophantine equations. About additive number theory, I will show how the methods of nonstandard analysis can be used to prove density-dependent properties of sets of integers. A recent example is the following theorem: If a set $A$ of natural numbers has positive upper asymptotic density then there exists infinite sets $B$, $C$ such that their sumset $C+B$ is contained in the union of $A$ and a shift of $A$. (This gives a partial answer to an old question by Erdős.)