Friday, October 4, 201310:00 amSet theory seminarGC 6417

Embeddings among the $\omega_1$-like models of set theory, part I

Victoria Gitman

The City University of New York

Victoria Gitman

An $\omega_1$-like model of set theory is an uncountable model, all of whose initial segments are countable. The speaker will present two $\omega_1$-like models of set theory, constructed using $\Diamond$, which are incomparable with respect to embeddability: neither is isomorphic to a submodel of the other. Under a suitable large cardinal assumption, there are such models that are well-founded.

Victoria Gitman received her Ph.D. in 2007 from the CUNY Graduate Center, as a student of Joel Hamkins, and is presently a visiting scholar at the CUNY Graduate Center. Her research is in Mathematical Logic, in particular in the areas of Set Theory and Models of Peano Arithmetic.