Poster

Monday, April 11, 20164:00 pmGC Science Center, Room 4102

Freiling’s axiom of symmetry, or throwing darts at the real line

Joel David Hamkins

The City University of New York

Joel David Hamkins

This will be a talk for the GC Math Program Graduate Student Colloquium.  The talk will be aimed at a general audience of mathematics graduate students.

I shall give an elementary presentation of Freiling’s axiom of symmetry, which is the principle asserting that if we map every real $x$ to a countable set of reals $A_x$, then there are two reals $x$ and $y$ for which $x$ is not in $A_y$ and $y$ is not in $A_x$.  To argue for the truth of this principle, Freiling imagined throwing two darts at the real number line, landing at $x$ and $y$ respectively: almost surely, the location $y$ of the second dart is not in the set $A_x$ arising from that of the first dart, since that set is countable; and by symmetry, it shouldn’t matter which dart we imagine as being first. So it may seem that almost every pair must fulfill the principle. Nevertheless, the principle is independent of the axioms of ZFC and in fact it is provably equivalent to the failure of the continuum hypothesis.  I’ll introduce the continuum hypothesis in a general way and discuss these foundational matters, before providing a proof of the equivalence of the negation of CH with the axiom of symmetry. The axiom of symmetry admits natural higher dimensional analogues, such as the case of maps from pairs $(x,y)$ to countable sets $A_{x,y}$, where one seeks a triple $(x,y,z)$ for which no member is in the set arising from the other two, and these principles also have an equivalent formulation in terms of the size of the continuum.

Questions and commentary can be made at: jdh.hamkins.org/freilings-axiom-of-symmetry-graduate-student-colloquium-april-2016/.

Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite.  He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research.  He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess.  His work on the automorphism tower problem lies at the intersection of group theory and set theory.  Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.