Professor Arthur W. Apter promoted to Distinguished Professor

Professor Arthur W. Apter promoted to Distinguished Professor

Arthur ApterProfessor Arthur W. Apter, a long-standing and prominent member of the New York logic community, has been promoted to Distinguished Professor at CUNY, effective February 1, 2014.

Professor Apter is known internationally for his foundational early work in choiceless set theory and also for his work in the area of forcing and large cardinals, including especially a large body of results concerning the indestructibility phenomenon of large cardinals and the level-by-level agreement between strong compactness and supercompactness, among many other topics.  A prolific researcher, he has published well over 100 articles in refereed research journals.

From his profile at the CUNY Distinguished Professor page:

Professor Arthur W. Apter was born and raised in Brooklyn, New York, where he attended New York City public schools. After graduation in 1971 from Sheepshead Bay High School, he attended MIT, where he earned his B.S. in Mathematics in 1975 and his Ph.D. in Mathematics in 1978. After spending one additional postdoctoral year at MIT, he spent two years in the Mathematics Department of the University of Miami and five years in the Mathematics Department of Rutgers University – Newark Campus.

He has been affiliated with the Mathematics Department of Baruch College since 1986, and was appointed to the Doctoral Faculty in Mathematics of the CUNY Graduate Center in 2006. He was the doctoral advisor of Shoshana Friedman (Ph.D. CUNY 2009) and doctoral co-advisor of Grigor Sargsyan (Ph.D. UC Berkeley 2009), whom he mentored as an undergraduate in the CUNY Baccalaureate Program. He has also supervised two additional students in advanced reading courses in mathematics as undergraduates, Lilit Martirosyan and Chase Skipper.

Professor Apter is a mathematical logician, who specializes in set theory. His research focuses on large cardinals and forcing, but he also maintains a keen interest in inner model theory.

Leave a Reply

Your email address will not be published. Required fields are marked *