A self-specializing Souslin tree

Set theory seminarFriday, September 27, 201310:00 am6417

Gunter Fuchs

A self-specializing Souslin tree

The City University of New York

I will present a construction, assuming Jensen’s combinatorial principle diamond, of a Souslin tree T which, after forcing with T, will be Ahronszajn off the generic branch. More precisely, forcing with T will add a cofinal branch b through T, yet in the generic extension by b, whenever p is a node of T which does not belong to b, then the subtree of T which lies above p will be Q-embeddable, meaning that there is an order preserving function from that subtree to the rationals. This shows that the rigidity property of being Souslin off the generic branch is strictly stronger than the unique branch property, two notions of rigidty previously studied in joint work with Joel Hamkins, where it was conjectured that it would be possible to construct such a self specializing Souslin tree.

Gunter Fuchs is a professor at The City University of New York, and conducts research in mathematical logic and especially set theory.

Posted by on September 22nd, 2013