Computable processes can produce arbitrary outputs in nonstandard models: part II
Victoria Gitman
The City University of New York
This is a continuation of last week’s talk. I will continue with a proof of Woodin’s theorem, recently generalized by Blanck and Enayat, showing that for every computably enumerable theory $T$ extending ${\rm PA}$, there is a corresponding index $e$ such that ${\rm PA}\vdash “W_e$ is finite” and whenever a model $M\models T$ satisfies that $W_e$ is contained in some $M$-finite set $s$, then $M$ has an end-extension $N\models T$ in which $W_e=s$. Indeed, the hypotheses can be relaxed to say that $T$ extends ${\rm I}\Sigma_1$, but I will not discuss this in the talk.
Victoria Gitman received her Ph.D. in 2007 from the CUNY Graduate Center, as a student of Joel Hamkins, and is presently a visiting scholar at the CUNY Graduate Center. Her research is in Mathematical Logic, in particular in the areas of Set Theory and Models of Peano Arithmetic.