Randomness and Fourier series
Johanna Franklin
Hofstra University
Carleson’s Theorem states that the Fourier series of certain integrable functions converge almost everywhere. I will consider this theorem in the context of computable analysis and show that the points that satisfy Carleson’s Theorem are precisely the Schnorr random points. This work is joint with Timothy H. McNicholl and Jason Rute.
Prof. Franklin has been an Assistant Professor in the mathematics department of Hofstra University since 2014. She studies algorithmic randomness and recursion theory, with applications in probability and ergodic theory. She received her doctorate from the University of California-Berkeley, under the supervision of Ted Slaman, and has taught at the University of Connecticut, Dartmouth College, the University of Waterloo, and the National University of Singapore.