# Recent progress on the modal logic of forcing and grounds

## Joel David Hamkins

### The City University of New York

The modal logic of forcing arises when one considers a model of set theory in the context of all its forcing extensions, with “true in all forcing extensions” and“true in some forcing extension” as the accompanying modal operators. In this modal language one may easily express sweeping general forcing principles, such as the assertion that every possibly necessary statement is necessarily possible, which is valid for forcing, or the assertion that every possibly necessary statement is true, which is the maximality principle, a forcing axiom independent of but equiconsistent with ZFC. Similarly, the dual modal logic of grounds concerns the modalities “true in all ground models” and “true in some ground model”. In this talk, I shall survey the recent progress on the modal logic of forcing and the modal logic of grounds. This is joint work with Benedikt Loewe and George Leibman.

Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite. He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research. He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess. His work on the automorphism tower problem lies at the intersection of group theory and set theory. Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.