# Spectra of differentially closed fields

## Russell Miller

### City University of New York

The spectrum Spec(_{0} is isomorphic to a computable one. The latter theorem (which relativizes, to give the main result above) resembles the famous result of Downey and Jockusch on Boolean algebras, but the proof is different, yielding a Δ_{2} isomorphism between the low model and its computable copy; moreover, our first theorem shows that the extension of the result to the low_{4} case for Boolean algebras does not hold for _{0}.

This is joint work by Dave Marker and the speaker.

Russell Miller is professor of mathematics at Queens College of CUNY and also at the CUNY Graduate Center. He conducts research in mathematical logic, especially computability theory and its interaction with other areas of mathematics, as in computable model theory. He received his doctorate from the University of Chicago in 2000, as a student of Robert Soare, and subsequently held a postdoctoral position at Cornell University until 2003, when he came to CUNY.