The logical complexity of Schanuel’s Conjecture

Model theory seminarFriday, September 9, 201612:30 pmGC 6417

David Marker

The logical complexity of Schanuel’s Conjecture

University of Illinois at Chicago

In its most natural form Schanuel’s Conjecture is a $\Pi_1^1$-statement. We will show that there is an equivalent $\Pi^0_3$-statement. They key idea is a result of Jonathan Kirby showing that, if Schanuel’s Conjecture is false, then there are canonical counterexamples. Most of my lecture will describe Kirby’s work.

Professor Marker holds the position of LAS Distinguished Professor in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He conducts research in model theory and it applications, particularly in applications to real algebraic geometry and real analytic geometry, exponentiation and differential algebra. His excellent textbook Model Theory: an Introduction is widely studied.

Posted by on September 3rd, 2016