The rearrangement number

Set theory seminarFriday, November 6, 201510:00 amGC 3212

Joel David Hamkins

The rearrangement number

The City University of New York

The Riemann rearrangement theorem states that a convergent real series $sum_n a_n$ is absolutely convergent if and only if the value of the sum is invariant under all rearrangements $sum_n a_{p(n)}$ by any permutation $p$ on the natural numbers; furthermore, if a series is merely conditionally convergent, then one may find rearrangements for which the new sum $sum_n a_{p(n)}$ has any desired (extended) real value or which becomes non-convergent. In recent joint work with Andreas Blass, Will Brian, myself, Michael Hardy and Paul Larson, based on an exchange in reply to a Hardy’s MathOverflow question on the topic, we investigate the minimal size of a family of permutations that can be used in this manner to test an arbitrary convergent series for absolute convergence.  Specifically, we define the rearrangement number $rr$, a new cardinal characteristic of the continuum, to be the smallest cardinality of a set $P$ of permutations of the natural numbers, such that if a convergent real series $sum_n a_n$ remains convergent to the same value after any rearrangement $sum_n a_{p(n)}$ by a permutation $p$ in $P$, then it is absolutely convergent. The corresponding rearrangement number for sums, denoted rr_Sigma, is the smallest cardinality of a family $P$ of permutations, such that if a series $sum_n a_n$ is conditionally convergent, then there is some rearrangement $sum_n a_{p(n)}$, by a permutation $p$ in $P$, for which the series converges to a different value. We investigate the basic properties of these numbers, and explore their relations with other cardinal characteristics of the continuum. Our main results are that b≤ rr≤ non(M), that d≤ rr_Sigma, and that b≤ rr is relatively consistent.


MathOverflow questionJDH blog post about this talk

Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite.  He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research.  He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess.  His work on the automorphism tower problem lies at the intersection of group theory and set theory.  Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.

Posted by on October 9th, 2015