Towards Syntactic Epistemic Game Theory

Computational Logic SeminarTuesday, September 3, 20132:00 pmGraduate Center, room 3209

Sergei Artemov

Towards Syntactic Epistemic Game Theory

The CUNY Graduate Center

The traditional semantic approach to consider a game as an Aumann structure, though flexible and convenient, is not foundationally satisfactory due to assumptions that a given Aumann structure adequately represents the game and that this structure itself is common knowledge for the players.

These assumptions leave a gap between the officially syntactic character of the game description that often admits multiple models and studying a game as a specific model that is somehow assumed to be commonly known. This gap has been largely ignored or covered up by using as examples simple epistemic scenarios with natural models that were tacitly used as definitions of the game instead of declared syntactic game descriptions. Among others, Aumman found this foundationally unsatisfactory and argued for using what he called ‘Syntactic epistemic logic’ for reasoning about games.

In this talk, we outline a systematic approach to epistemic game theory which we suggest calling ‘Syntactic Epistemic Game Theory’, SEGT, consistent with Aumann’s suggestions, that studies games as they are normally described, in their syntactic form. In SEGT, semantic methods should be properly justified from the original game description. As a case study, we offer a SEGT theory of definitive solutions of strategic games with ordinal payoffs.

Professor Artemov holds a Distinguished Professor position at the Graduate Center of the City University of New York, in the Computer Science, Mathematics and Philosophy programs. He is also Professor of Mathematics at Moscow State University, the founder and the Head of the research laboratory Logical Problems in Computer Science. He conducts research in the areas of logic in computer science, mathematical logic and proof theory, knowledge representation and artificial intelligence, automated deduction and verification and optimal control and hybrid systems.

Posted by on August 31st, 2013