Blog Archives

Topic Archive: CSI

Chris Conidis
College of Staten Island - CUNY
Prof. Conidis received his Ph.D. in mathematics from the University of Chicago in 2009, under the supervision of Denis Hirschfeldt, Antonio Montalban, and Robert Soare, and subsequently held postdoctoral positions at the University of Waterloo and at Vanderbilt University. His work applies techniques of computability theory to problems in algebra, analysis, and combinatorics. He is now an Assistant Professor at the College of Staten Island in CUNY.
Joel David Hamkins
The City University of New York
Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite.  He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research.  He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess.  His work on the automorphism tower problem lies at the intersection of group theory and set theory.  Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.
Gunter Fuchs
The City University of New York
Gunter Fuchs is a professor at The City University of New York, and conducts research in mathematical logic and especially set theory.