# Blog Archives

# Topic Archive: differential algebra

# Effective Bounds For Finite Differential-Algebraic Varieties (Part I)

Given a differential algebraic variety over a partial differential field, can one give bounds for the degree of the Zariski closure which depend only on the order and degree of the differential polynomials (but not the parameters) which determine the variety? We will discuss the general theory of prolongations of differential algebraic varieties as developed by Moosa and Scanlon, and use this theory to reduce the problem to a combinatorial problem (which will be discussed in detail in the second part of the talk). Along the way we will give numerous examples of the usefulness of the result, some of an arithmetic flavor. We will also describe some other applications of the theory of prolongations.

This is joint work with Omar Sanchez.

# Spectra of differentially closed fields

The spectrum Spec(_{0} is isomorphic to a computable one. The latter theorem (which relativizes, to give the main result above) resembles the famous result of Downey and Jockusch on Boolean algebras, but the proof is different, yielding a Δ_{2} isomorphism between the low model and its computable copy; moreover, our first theorem shows that the extension of the result to the low_{4} case for Boolean algebras does not hold for _{0}.

This is joint work by Dave Marker and the speaker.

# Picard-Vessiot structures

# Turing degree spectra of differentially closed fields

The spectrum Spec(_{0} is isomorphic to a computable one. The latter theorem (which relativizes, to give the main result above) resembles the famous result of Downey and Jockusch on Boolean algebras, but the proof is different, yielding a Δ_{2} isomorphism between the low model and its computable copy; moreover, our first theorem shows that the extension of the result to the low_{4} case for Boolean algebras does not hold for _{0}.

This is joint work by Dave Marker and the speaker. The slides for this talk are available here.

# Logarithmic-Exponential Series

I will survey some old work of van den Dries, Macintyre and myself. We construct an algebraic nonstandard model of the theory of the real exponential field. There is a natural derivation on the LE-series which is compatible with the exponential and the archimedean valuation.

# LE-Series

In this expository talk I will discuss the construction of the field of LE-series after van den Dries, Macintyre, and Marker. The field of LE-series is an ordered differential field extending the field of real Laurent series which also has a well-behaved exponential function. The field of LE-series is closed under a host of operations, in particular it is closed under formal integration as well as compositional inverse (once composition has been properly interpreted). As such this field may be viewed, at least conjecturally, as providing a universal domain for ordered differential algebra as witnessed in Hardy fields.

# D-Fields as a Common Formalism for Difference and Differential Algebra

In a series of papers with Rahim Moosa, I have developed a theory of D-rings unifying and generalizing difference and differential algebra. Here we are given a ring functor D whose underlying additive group scheme is isomorphic to some power of the additive group. A D-ring is a ring R given together with a homomorphism f : R → D(R). A first motivating example is when D(R) = R[ε]/(ε2), so that the data of D-ring is that of an endomorphism σ:R → R and a σ-derivation ∂:R → R (that is, ∂(rs) = ∂(r)σ(s)+σ(r)∂(s)). Another example is when D(R) = R, where a D-ring structure is given by an endomorphism of R.

We develop a theory of prolongation spaces, jet spaces, and of D-algebraic geometry. With our most recent paper, we draw out the model theoretic consequences of this work showing that in characteristic zero, the theory of D-fields has a model companion, which we call the theory of D-closed fields, and that many of the refined model theoretic theorems (eg the Zilber trichotomy) hold at this level of generality. As a complement, we show that no such model companion exists in characteristic p under a mild hypothesis on D.