Blog Archives

Topic Archive: embeddings

Set theory seminarFriday, March 6, 201510:00 amGC 6417

Joel David Hamkins

Embeddings of the universe into the constructible universe, current state of knowledge

The City University of New York

I shall describe the current state of knowledge concerning the question of whether there can be an embedding of the set-theoretic universe into the constructible universe. The main question is: can there be an embedding $j:Vto L$ of the set-theoretic universe $V$ into the constructible universe $L$, when $Vneq L$? The notion of embedding here is merely that $xin y$ if and only if $j(x)in j(y)$, and such a map need not be elementary nor even $Delta_0$-elementary. It is not difficult to see that there can generally be no $Delta_0$-elementary embedding $j:Vto L$, when $Vneq L$.  Nevertheless, the question arises very naturally in the context of my previous work on the embeddability phenomenon, which shows that every countable model $M$ does admit an embedding $j:Mto L^M$ into its constructible universe. More generally, any two countable models of set theory are comparable; one of them embeds into the other. Indeed, one model $langle M,in^Mrangle$ embeds into another $langle N,in^Nrangle$ just in case the ordinals of the first $text{Ord}^M$ order-embed into the ordinals of the second $text{Ord}^N$.  In these theorems, the embeddings $j:Mto L^M$ are defined completely externally to $M$, and so it was natural to wonder to what extent such an embedding might be accessible inside $M$. Currently, the question remains open, but we have some partial progress, settling it in a number of cases.

This is joint work of myself, W. Hugh Woodin, Menachem Magidor, with contributions also by David Aspero, Ralf Schindler and Yair Hayut.  See more information at the links below:

Blog post for this talk |  Related MathOverflow question | Article

Models of PAWednesday, November 6, 20136:30 pmGC 4214.03

Kerry Ojakian

Tanaka’s embedding theorem

Bronx Community College
Set theory seminarFriday, October 11, 201310:00 amGC 6417

Victoria Gitman

Embeddings among the $\omega_1$-like models of set theory, part II

The City University of New York

The speaker will give the second part of her talk, continued from the previous week. An $\omega_1$-like model of set theory is an uncountable model, all of whose initial segments are countable. The speaker will present two $\omega_1$-like models of set theory, constructed using $\Diamond$, which are incomparable with respect to embeddability: neither is isomorphic to a submodel of the other. Under a suitable large cardinal assumption, there are such models that are well-founded.

Set theory seminarFriday, October 4, 201310:00 amGC 6417

Victoria Gitman

Embeddings among the $\omega_1$-like models of set theory, part I

The City University of New York

An $\omega_1$-like model of set theory is an uncountable model, all of whose initial segments are countable. The speaker will present two $\omega_1$-like models of set theory, constructed using $\Diamond$, which are incomparable with respect to embeddability: neither is isomorphic to a submodel of the other. Under a suitable large cardinal assumption, there are such models that are well-founded.