Blog Archives

Topic Archive: graph theory

NERDS: New England Recursion & Definability SeminarSunday, November 6, 201611:40 amScience Center, Room E104​, Wellesley College, Wellesley, MA

Rachel Stahl

Recursion theoretic results for the game of Cops and Robbers on graphs

University of Connecticut

Cops and Robbers is a vertex-pursuit game played on a connected graph wherein two players, a cop and a robber, begin on a pair of vertices and alternate turns moving to adjacent vertices. A graph is cop-win if, from any pair of starting vertices, the cop can occupy the same vertex as the robber after finitely many rounds. In this talk, preliminary computability-theoretic and reverse-math results about the game of cops and robbers on infinite computable graphs will be discussed. We will consider several characterizations of infinite cop-win trees and graphs, and explore the complexity of winning strategies for both players.

Tuesday, December 1, 201512:00 pmBronx Community College, room CP 305Research Seminar, Mathematics and Computer Science Department of BCC.

Russell Miller

Computability problems in number theory

City University of New York

We will consider several number-theoretic questions which arise from computable model theory. One of these, recently solved by Poonen, Schoutens, Shlapentokh, and the speaker, involves attempting to “embed” a graph into a field: given a graph, one wishes to construct a field with the exact same computable-model-theoretic properties as the graph. (For instance, the automorphisms of the graph should correspond to the automorphisms of the field, by a bijective functorial correspondence which preserves the Turing degree of each automorphism.) Another arises out of consideration of Hilbert’s Tenth Problem for subrings of the rationals: we ask for subrings in which Hilbert’s Tenth Problem is no harder than it is for the rationals themselves. This is known for semilocal subrings, and Eisenträger, Park, Shlapentokh and the speaker have shown that it holds for certain non-semilocal subrings as well, but it remains open whether one can invert “very few” primes and still have it hold. We will explain this problem and discuss the number-theoretic question which arises out of it.

NERDS: New England Recursion & Definability SeminarSaturday, October 17, 201510:15 amCarriage House, Assumption College, Worcester, MA

Tyler Markkanen

A-Computable Graphs

Springfield College

A locally finite computable graph G is called A-computable if A can compute the neighbors of the vertices of G. William Gasarch and Andrew Lee introduced this notion to study graphs that are “between” computable and highly computable (i.e., ∅-computable). For any noncomputable c.e. set A, they proved that the A-computable graphs behave just like computable graphs when it comes to colorings. In this talk, we will see that their result also works for Euler paths and domatic partitions. Although it does not extend to arbitrary sets A (that are not necessarily c.e.), we will classify the sets for which it does.

Model theory seminarCUNY Logic WorkshopFriday, March 13, 20152:00 pmGC 6417

Sergei Starchenko

Ramsey-type theorems in certain NIP theories

University of Notre Dame

In the paper “Crossing patterns of semi-algebraic sets” (J. Combin. Theory Ser. A 111, 2005) Alon et al. showed that families of graphs with the edge relation given by a semialgebraic relation of bounded complexity satisfy a stronger regularity property than arbitrary graphs. In this talk we show that this can be generalized to families of graphs whose edge relation is uniformly definable in a structure satisfying a certain model theoretic property called distality.

This is a joint work with A. Chernikov.

NERDS: New England Recursion & Definability SeminarSaturday, October 18, 20143:20 pmAssumption College, Worcester, MA

Reed Solomon

Ramsey’s Theorem applied to infinite traceable graphs

University of Connecticut

We consider three applications of Ramsey’s Theorem to infinite traceable graphs and finitely generated lattices from the point of view of reverse mathematics. For two of the applications, we will show that Ramsey’s Theorem is necessary while for the third application, it is not necessary. We will conclude with some related open questions.