# Topic Archive: Jónsson cardinals

Set theory seminarFriday, December 2, 201610:00 amGC 6417

# Regular Jónsson cardinals

Ohio University

For an infinite cardinal $\lambda$, we say that $\lambda$ is Jónsson if it satisfies the square bracket partition property $\lambda\to[\lambda]^{<\omega}_\lambda$. This means that, for every coloring $F\colon [\lambda]^{<\omega}\to\lambda$, there is some set $H\in [\lambda]^\lambda$ with the property that $\mathrm{ran}(F\upharpoonright [H]^{<\omega})\subsetneq\lambda$. It is rather well known that the consistency strength of "there is a Jónsson cardinal" lies above "$0^\sharp$ exists", but below the existence of a measurable. However, the question of what sorts of cardinals can be Jónsson has turned out to be rather difficult. The goal of this talk is to sketch a simplified proof of the result (due to Shelah) that if $\lambda$ is the least regular Jónsson cardinal, then $\lambda$ must be $\lambda\times\omega$-Mahlo. The advantage of the proof presented here is that the machinery employed can be easily generalized, and time permitting I would like to discuss how one might attempt to prove that such a cardinals must be greatly Mahlo.

Set theory seminarFriday, December 4, 201510:00 amGC 3212

# Jónsson cardinals and club guessing

Ohio University

We say that a cardinal $\lambda$ is a Jónsson cardinal if it satisfies the following weak Ramsey-type property: given any coloring $F:[\lambda]^{<\omega}\to \lambda$ of the finite subsets of $\lambda$ in $\lambda$-many colors, there exists a set $H\in[\lambda]^\lambda$ such that the range of $F\upharpoonright [H]^{<\omega}$ is a proper subset of $\lambda$. One of the big driving forces present in early chapters Cardinal Arithmetic is an attempt to understand the combinatorial structure at and around Jónsson cardinals using scales and club guessing. The goal of this talk is to highlight the connection between Jónsson cardinals and the existence of certain sorts of club guessing ideals. Our focus will be on how club guessing ideals interact with Jónssonness at successors of singulars.