# Blog Archives

# Topic Archive: KM

# Open determinacy for games on the ordinals is stronger than ZFC

The principle of open determinacy for class games — two-player games of perfect information with plays of length ω, where the moves are chosen from a possibly proper class, such as games on the ordinals — is not provable in Zermelo-Fraenkel set theory ZFC or Gödel-Bernays set theory GBC, if these theories are consistent, because provably in ZFC there is a definable open proper class game with no definable winning strategy. In fact, the principle of open determinacy and even merely clopen determinacy for class games implies Con(ZFC) and iterated instances Con(Con(ZFC)) and more, because it implies that there is a satisfaction class for first-order truth, and indeed a transfinite tower of truth predicates TR_α for iterated truth-about-truth, relative to any class parameter. This is perhaps explained, in light of the Tarskian recursive definition of truth, by the more general fact that the principle of clopen determinacy is exactly equivalent over GBC to the principle of elementary transfinite recursion ETR over well-founded class relations. Meanwhile, the principle of open determinacy for class games is provable in the stronger theory GBC + Pi^1_1 comprehension, a proper fragment of Kelley-Morse set theory KM.

This is joint work with Victoria Gitman, with helpful participation of Thomas Johnstone.

See also related article: V. Gitman, J.D. Hamkins, Open determinacy for class games, submitted.

For further information and commentary concerning this talk, please see the related post on my blog.

# A natural strengthening of Kelley-Morse set theory

I shall introduce a natural strengthening of Kelley-Morse set theory KM to the theory we denote KM+, by including a certain class collection principle, which holds in all the natural models usually provided for KM, but which is not actually provable, we show, in KM alone. The absence of the class collection principle in KM reveals what can be seen as a fundamental weakness of this classical theory, showing it to be less robust than might have been supposed. For example, KM proves neither the Łoś theorem nor the Gaifman lemma for (internal) ultrapowers of the universe, and furthermore KM is not necessarily preserved, we show, by such ultrapowers. Nevertheless, these weaknesses are corrected by strengthening it to the theory KM+. The talk will include a general elementary introduction to the various second-order set theories, such as Gödel-Bernays set theory and Kelley-Morse set theory, including a proof of the fact that KM implies Con(ZFC). This is joint work with Victoria Gitman and Thomas Johnstone.