Blog Archives

Topic Archive: philosophy of mathematics

Computational Logic SeminarTuesday, February 3, 20152:00 pmGraduate Center 3307

Andrei Rodin

What is Constructive Axiomatic Method?

Institute of Philosophy of Russian Academy of Sciences; Smolny College of Liberal Arts and Sciences, Saint-Petersburg State University

The received notion of axiomatic theory, which stems from Hilbert, is that of set T of propositions (either contentful or non-interpreted aka propositional forms) with subset A of axioms provided with a notion of consequence, which generates T from A in the obvious way. I argue that this standard notion is too narrow for being an adequate theoretical model of many mathematical theories; the class of such counter-examples is apparently very large and it includes such different theories as the geometrical theory of Euclid’s Elements, Book 1, and the more recent Homotopy type theory. In order to fix this problem I introduce a more general notion of theory, which uses typing and a generalized notion of consequence applicable also to objects of other types than propositions. I call such a theory constructive axiomatic theory and show that this particular conception of being constructive indeed captures many important ideas concerning the mathematical constructivity found in the earlier literature from Hilbert to Kolmogorov to Martin-Lof. Finally I provide an epistemological argument intended to show that the notion of constructive axiomatic theory is more apt to be useful in natural sciences and other empirical contexts than the standard notion. Disclaimer: The notion of constructive axiomatic theory is not my invention. The idea and its technical implementation are found in Martin-Lof ‘s constructive type theory if not already in Euclid. My aim is to make this notion explicit and introduce it into the continuing discussions on axiomatic method and mathematical and logical constructivity.

NY Philosophical Logic GroupMonday, November 10, 20145:00 pmNYU Philosophy, 5 Washington Place, Room 302

Joel David Hamkins

Does definiteness-of-truth follow from definiteness-of-objects?

The City University of New York

This talk — a mix of mathematics and philosophy — concerns the extent to which we may infer definiteness of truth in a mathematical context from definiteness of the underlying objects and structure of that context. The philosophical analysis is based in part on the mathematical observation that the satisfaction relation for model-theoretic truth is less absolute than often supposed.  Specifically, two models of set theory can have the same natural numbers and the same structure of arithmetic in common, yet disagree about whether a particular arithmetic sentence is true in that structure. In other words, two models can have the same arithmetic objects and the same formulas and sentences in the language of arithmetic, yet disagree on their corresponding theories of truth for those objects. Similarly, two models of set theory can have the same natural numbers, the same arithmetic structure, and the same arithmetic truth, yet disagree on their truths-about-truth, and so on at any desired level of the iterated truth-predicate hierarchy.  These mathematical observations, for which I shall strive to give a very gentle proof in the talk (using only elementary classical methods), suggest that a philosophical commitment to the determinate nature of the theory of truth for a structure cannot be seen as a consequence solely of the determinateness of the structure in which that truth resides. The determinate nature of arithmetic truth, for example, is not a consequence of the determinate nature of the arithmetic structure N = {0,1,2,…} itself, but rather seems to be an additional higher-order commitment requiring its own analysis and justification.

This work is based on my recent paper, Satisfaction is not absolute, joint with Ruizhi Yang (Fudan University, Shanghai).

 

Monday, May 12, 20142:40 pmDavis Auditorium, Schapiro CEPSR, Columbia University Morningside Campus

Martin Davis

Gödel, Mechanism, and Consciousness

New York University & UC-Berkeley
CUNY Logic WorkshopFriday, November 22, 20132:00 pmGC 6417

Tamar Lando

Measure semantics for modal logics

Columbia University

Long before Kripke semantics became standard in modal logic, Tarski showed us that the basic propositional modal language can be interpreted in topological spaces. In Tarski’s semantics for the modal logic $S4$, each propositional variable is evaluated to an arbitrary subset of a fixed topological space. I develop a related, measure theoretic semantics, in which modal formulas are interpreted in the Lebesgue measure algebra, or algebra of Borel subsets of the real interval $[0,1]$, modulo sets of measure zero. This semantics was introduced by Dana Scott in the last several years. I discuss some of my own completeness results, and ways of extending the semantics to more complex modal languages.

CUNY Logic WorkshopFriday, September 27, 20132:00 pmGC 6417

Joel David Hamkins

Satisfaction is not absolute

The City University of New York

I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory $M_1$ and $M_2$, for example, can agree on their natural numbers $langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_1}=langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_2}$, yet disagree on arithmetic truth: they have a sentence $sigma$ in the language of arithmetic that $M_1$ thinks is true in the natural numbers, yet $M_2$ thinks $negsigma$ there. Two models of set theory can agree on the natural numbers $mathbb{N}$ and on the reals $mathbb{R}$, yet disagree on projective truth. Two models of set theory can have the same natural numbers and have a computable linear order in common, yet disagree about whether this order is well-ordered. Two models of set theory can have a transitive rank initial segment $V_delta$ in common, yet disagree about whether this $V_delta$ is a model of ZFC. The theorems are proved with elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai). We argue, on the basis of these mathematical results, that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

Tuesday, April 30, 20134:00 pmYeshiva UniversityFurst Hall, Amsterdam Ave. & 185th Street.

Joel David Hamkins

The theory of infinite games, with examples, including infinite chess

The City University of New York

This will be a talk on April 30, 2013 for a joint meeting of the Yeshiva University Mathematics Club and the Yeshiva University Philosophy Club. I will give a general introduction to the theory of infinite games, suitable for mathematicians and philosophers. What does it mean to play an infinitely long game? What does it mean to have a winning strategy for such a game? Is there any reason to think that every game should have a winning strategy for one player or another? Could there be a game, such that neither player has a way to force a win? Must every computable game have a computable winning strategy? I will present several game paradoxes and example infinitary games, including an infinitary version of the game of Nim, and several examples from infinite chess.

Hitoshi Omori
Kobe University, Visiting Fellow, Grad Center, CUNY
Hitoshi Omori is a visting fellow in the CUNY Graduate Center program in Philosophy, visiting from Kobe University. His main research interests are Logic, Logic And Foundations Of Mathematics, Philosophy of Logic, Philosophical Logic, Modal Logic and Non-Classical Logic.
Haim Gaifman
Columbia University
Professor Gaifman’s first result (obtained when he was a math student) was the equivalence of context-free grammars and categorial grammars. He was Carnap’s research assistant, working on the foundations of probability theory, and got his Ph. D. under Tarski (on infinite Boolean algebras). He worked on a broad spectrum of subjects: in mathematical logic (mostly set theory, where he invented the technique of iterated ultrapowers, and models of Peano’s arithmetic), foundations of probability (where he defined probabilities on first-order and on richer languages), in philosophy of language and philosophy of mathematics, as well as in theoretical computer science.. He held various permanent and visiting positions in mathematics, philosophy and computer science departments. While he was professor of mathematics at the Hebrew University, he taught courses in philosophy and directed the program in History and Philosophy of Science. Gaifman’s recent interests include foundations of probability, rational choice, philosophy of mathematics, logical systems that formalize aspects of natural reasoning, Frege and theories of naming.
GC Philosophy ColloquiumWednesday, November 28, 201212:00 amGC 9405

Joel David Hamkins

Pluralism in set theory: does every mathematical statement have a definite truth value?

The City University of New York

I shall give a summary account of some current issues in the philosophy of set theory, specifically, the debate on pluralism and the question of the determinateness of set-theoretical and mathematical truth. The traditional Platonist view in set theory, what I call the universe view, holds that there is an absolute background concept of set and a corresponding absolute background set-theoretic universe in which every set-theoretic assertion has a final, definitive truth value. What I would like to do is to tease apart two often-blurred aspects of this perspective, namely, to separate the claim that the set-theoretic universe has a real mathematical existence from the claim that it is unique. A competing view, which I call the multiverse view, accepts the former claim and rejects the latter, by holding that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe, and a corresponding pluralism of set-theoretic truths. After framing the dispute, I shall argue that the multiverse position explains our experience with the enormous diversity of set-theoretic possibility, a phenomenon that is one of the central set-theoretic discoveries of the past fifty years and one which challenges the universe view. In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Joel David Hamkins
The City University of New York
Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite.  He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research.  He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess.  His work on the automorphism tower problem lies at the intersection of group theory and set theory.  Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.