Blog Archives

Topic Archive: philosophy of set theory

NY Philosophical Logic GroupMonday, November 10, 20145:00 pmNYU Philosophy, 5 Washington Place, Room 302

Joel David Hamkins

Does definiteness-of-truth follow from definiteness-of-objects?

The City University of New York

This talk — a mix of mathematics and philosophy — concerns the extent to which we may infer definiteness of truth in a mathematical context from definiteness of the underlying objects and structure of that context. The philosophical analysis is based in part on the mathematical observation that the satisfaction relation for model-theoretic truth is less absolute than often supposed.  Specifically, two models of set theory can have the same natural numbers and the same structure of arithmetic in common, yet disagree about whether a particular arithmetic sentence is true in that structure. In other words, two models can have the same arithmetic objects and the same formulas and sentences in the language of arithmetic, yet disagree on their corresponding theories of truth for those objects. Similarly, two models of set theory can have the same natural numbers, the same arithmetic structure, and the same arithmetic truth, yet disagree on their truths-about-truth, and so on at any desired level of the iterated truth-predicate hierarchy.  These mathematical observations, for which I shall strive to give a very gentle proof in the talk (using only elementary classical methods), suggest that a philosophical commitment to the determinate nature of the theory of truth for a structure cannot be seen as a consequence solely of the determinateness of the structure in which that truth resides. The determinate nature of arithmetic truth, for example, is not a consequence of the determinate nature of the arithmetic structure N = {0,1,2,…} itself, but rather seems to be an additional higher-order commitment requiring its own analysis and justification.

This work is based on my recent paper, Satisfaction is not absolute, joint with Ruizhi Yang (Fudan University, Shanghai).

 

CUNY Logic WorkshopFriday, September 27, 20132:00 pmGC 6417

Joel David Hamkins

Satisfaction is not absolute

The City University of New York

I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory $M_1$ and $M_2$, for example, can agree on their natural numbers $langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_1}=langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_2}$, yet disagree on arithmetic truth: they have a sentence $sigma$ in the language of arithmetic that $M_1$ thinks is true in the natural numbers, yet $M_2$ thinks $negsigma$ there. Two models of set theory can agree on the natural numbers $mathbb{N}$ and on the reals $mathbb{R}$, yet disagree on projective truth. Two models of set theory can have the same natural numbers and have a computable linear order in common, yet disagree about whether this order is well-ordered. Two models of set theory can have a transitive rank initial segment $V_delta$ in common, yet disagree about whether this $V_delta$ is a model of ZFC. The theorems are proved with elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai). We argue, on the basis of these mathematical results, that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.

CUNY Logic WorkshopFriday, February 15, 201312:00 amGC 6417

Joel David Hamkins

On the axiom of constructibility and Maddy’s conception of restrictive theories

The City University of New York

This talk will be based on my paper, A multiverse perspective on the axiom of constructibility.

Set-theorists often argue against the axiom of constructibility V=L on the grounds that it is restrictive, that we have no reason to suppose that every set should be constructible and that it places an artificial limitation on set-theoretic possibility to suppose that every set is constructible.  Penelope Maddy, in her work on naturalism in mathematics, sought to explain this perspective by means of the MAXIMIZE principle, and further to give substance to the concept of what it means for a theory to be restrictive, as a purely formal property of the theory.

In this talk, I shall criticize Maddy’s specific proposal.  For example, it turns out that the fairly-interpreted-in relation on theories is not transitive, and similarly the maximizes-over and strongly-maximizes-over relations are not transitive.  Further, the theory ZFC + `there is a proper class of inaccessible cardinals’ is formally restrictive on Maddy’s proposal, although this is not what she had desired.

Ultimately, I argue that the $Vneq L$ via maximize position loses its force on a multiverse conception of set theory, in light of the classical facts that models of set theory can generally be extended to (taller) models of V=L.  In particular, every countable model of set theory is a transitive set inside a model of V=L.  I shall conclude the talk by explaining various senses in which V=L remains compatible with strength in set theory.

 

Haim Gaifman
Columbia University
Professor Gaifman’s first result (obtained when he was a math student) was the equivalence of context-free grammars and categorial grammars. He was Carnap’s research assistant, working on the foundations of probability theory, and got his Ph. D. under Tarski (on infinite Boolean algebras). He worked on a broad spectrum of subjects: in mathematical logic (mostly set theory, where he invented the technique of iterated ultrapowers, and models of Peano’s arithmetic), foundations of probability (where he defined probabilities on first-order and on richer languages), in philosophy of language and philosophy of mathematics, as well as in theoretical computer science.. He held various permanent and visiting positions in mathematics, philosophy and computer science departments. While he was professor of mathematics at the Hebrew University, he taught courses in philosophy and directed the program in History and Philosophy of Science. Gaifman’s recent interests include foundations of probability, rational choice, philosophy of mathematics, logical systems that formalize aspects of natural reasoning, Frege and theories of naming.
GC Philosophy ColloquiumWednesday, November 28, 201212:00 amGC 9405

Joel David Hamkins

Pluralism in set theory: does every mathematical statement have a definite truth value?

The City University of New York

I shall give a summary account of some current issues in the philosophy of set theory, specifically, the debate on pluralism and the question of the determinateness of set-theoretical and mathematical truth. The traditional Platonist view in set theory, what I call the universe view, holds that there is an absolute background concept of set and a corresponding absolute background set-theoretic universe in which every set-theoretic assertion has a final, definitive truth value. What I would like to do is to tease apart two often-blurred aspects of this perspective, namely, to separate the claim that the set-theoretic universe has a real mathematical existence from the claim that it is unique. A competing view, which I call the multiverse view, accepts the former claim and rejects the latter, by holding that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe, and a corresponding pluralism of set-theoretic truths. After framing the dispute, I shall argue that the multiverse position explains our experience with the enormous diversity of set-theoretic possibility, a phenomenon that is one of the central set-theoretic discoveries of the past fifty years and one which challenges the universe view. In particular, I shall argue that the continuum hypothesis is settled on the multiverse view by our extensive knowledge about how it behaves in the multiverse, and as a result it can no longer be settled in the manner formerly hoped for.

Joel David Hamkins
The City University of New York
Professor Hamkins (Ph.D. 1994 UC Berkeley) conducts research in mathematical and philosophical logic, particularly set theory, with a focus on the mathematics and philosophy of the infinite.  He has been particularly interested in the interaction of forcing and large cardinals, two central themes of contemporary set-theoretic research.  He has worked in the theory of infinitary computability, introducing (with A. Lewis and J. Kidder) the theory of infinite time Turing machines, as well as in the theory of infinitary utilitarianism and, more recently, infinite chess.  His work on the automorphism tower problem lies at the intersection of group theory and set theory.  Recently, he has been preoccupied with various mathematical and philosophical issues surrounding the set-theoretic multiverse, engaging with the emerging debate on pluralism in the philosophy of set theory, as well as the mathematical questions to which they lead, such as in his work on the modal logic of forcing and set-theoretic geology.