Blog Archives

Topic Archive: rank-into-rank embeddings

Set theory seminarFriday, November 13, 201510:00 amGC 3212

Joseph Van Name

Generalized Laver tables

CUNY Borough of Manhattan Community College

The Laver tables are finite self-distributive algebras generated by one element that approximate the free left-distributive algebra on one generator if a rank-into-rank cardinal exists. We shall generalize the notion of a Laver table to a class of locally finite self-distributive algebraic structures with an arbitrary number of generators. These generalized Laver tables emulate algebras of rank-into-rank embeddings with an arbitrary number of generators modulo some rank. Furthermore, if there exists a rank-into-rank cardinal, then the free left-distributive algebras on any number of generators can be embedded in a canonical way into inverse limits of generalized Laver tables. As with the classical Laver tables, the reduced generalized Laver tables can be given an associative operation that is analogous to the composition of elementary embeddings and satisfies the same identities that algebras of elementary embeddings are known to satisfy. Furthermore, the notion of the critical point also holds in these generalized Laver tables as well even though generalized Laver tables are locally finite or finite. While the only classical Laver tables are the tables of cardinality $2^{n}$, the finite generalized laver tables occur much more frequently and many generalized Laver tables can be constructed from the classical Laver tables. We shall give some results that allow one to quickly compute the self-distributive operation in a certain class of generalized Laver tables.

Here are the slides.

Set theory seminarModels of PAWednesday, March 25, 20155:00 pmGC 7314

Vincenzo Dimonte

Generic I0 at $\aleph_\omega$

Technische Universit├Ąt Wien

It is common practice to consider the generic version of large cardinals defined with an elementary embedding, but what happens when such cardinals are really large? The talk will concern a form of generic I0 and the consequences of this over-the-top hypothesis on the “largeness” of the powerset of $\aleph_\omega$. This research is a result of discussions with Hugh Woodin.

Slides

Set theory seminarFriday, February 6, 201510:00 amGC 6417

Sheila Miller

Critical sequences of rank-to-rank embeddings and a tower of finite left distributive algebras: Part II

City Tech - CUNY

The speaker will continue to discuss the properties of rank-into-rank embeddings and their connections to the study of the tower of finite left-distributive algebras known as Laver Tables.

Set theory seminarFriday, November 14, 201412:00 pmGC 6417

Sheila Miller

Critical sequences of rank-to-rank embeddings and a tower of finite left distributive algebras

City Tech - CUNY

In the early 1990’s Richard Laver discovered a deep and striking correspondence between critical sequences of rank-to-rank embeddings and finite left distributive algebras on integers. Each $A_n$ in the tower of finite algebras (commonly called the Laver Tables) can be defined purely algebraically, with no reference to the elementary embeddings, and yet there are facts about the Laver tables that have only been proven from a large cardinal assumption. We present here some of Laver’s foundational work on the algebra of critical sequences of rank-to-rank embeddings and related algebraic work of Laver’s and the author’s, describe how the finite algebras arise from the large cardinal embeddings, and mention several related open problems.