Blog Archives

Topic Archive: saturation

Models of PAWednesday, October 21, 20156:15 pm

Alf Dolich

Loftiness IV

The City University of New York

I will discuss more work of Kaufmann and Schmerl around loftiness. In particular I will discuss how in the definition of e-loftiness we may restrict our attention to only those types that define cuts. These consideration lead to a simple proof of a theorem of Pabion’s that for kappa an uncountable cardinal a model M of PA is kappa-saturated if and only if its underlying ordering is kappa-saturated. Time permitting I will also discuss how for countable models M, being lofty is equivalent to having a recursively saturated simple extension.

CUNY Logic WorkshopFriday, September 27, 20132:00 pmGC 6417

Joel David Hamkins

Satisfaction is not absolute

The City University of New York

I will discuss a number of theorems showing that the satisfaction relation of first-order logic is less absolute than might have been supposed. Two models of set theory $M_1$ and $M_2$, for example, can agree on their natural numbers $langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_1}=langlemathbb{N},{+},{cdot},0,1,{lt}rangle^{M_2}$, yet disagree on arithmetic truth: they have a sentence $sigma$ in the language of arithmetic that $M_1$ thinks is true in the natural numbers, yet $M_2$ thinks $negsigma$ there. Two models of set theory can agree on the natural numbers $mathbb{N}$ and on the reals $mathbb{R}$, yet disagree on projective truth. Two models of set theory can have the same natural numbers and have a computable linear order in common, yet disagree about whether this order is well-ordered. Two models of set theory can have a transitive rank initial segment $V_delta$ in common, yet disagree about whether this $V_delta$ is a model of ZFC. The theorems are proved with elementary classical methods.

This is joint work with Ruizhi Yang (Fudan University, Shanghai). We argue, on the basis of these mathematical results, that the definiteness of truth in a structure, such as with arithmetic truth in the standard model of arithmetic, cannot arise solely from the definiteness of the structure itself in which that truth resides; rather, it must be seen as a separate, higher-order ontological commitment.