Blog Archives
Topic Archive: stability
On dense independent subsets of geometric structures
We consider expansions of geometric theories obtained by adding a predicate distinguishing a “dense” independent subset, generalizing a construction introduced by A. Dolich, C. Miller and C. Steinhorn in the o-minimal context. The expansion preserves many of the properties related to stability, simplicity, rosiness and NIP. We also study the structure induced on the predicate, and show that despite its geometric triviality, it inherits most of the “combinatorial” complexity of the original theory. This is a joint work with Alexander Berenstein.
Why model-theorists shouldn’t think that ACF is easy
We all learned that stability theory derived many of its ideas from what happens in ACF, where everything is nice and easy. After all ACF has quantifier elimination and is strongly minimal, decidable, superstable, uncountably categorical, etc. However, my own struggles with ACF have humbled my opinion about it: it is an awfully rich theory that encodes way more than our current knowledge. I will discuss some examples showing how “difficult” ACF is: Grothendieck ring, isomorphism problem, set-theoretic intersection problem. Oddly enough, RCF seems to not have any of these problems. It is perhaps my ignorance, but I have come to think of RCF as much easier. Well, all, of course, is a matter of taste.
A survey of the model theory of tracial von Neumann algebras
Von Neumann algebras are certain algebras of bounded operators on Hilbert spaces. In this talk we will survey some of the model theoretic results about (tracial) von Neumann algebras, focusing mainly on (in)stability, quantifier-complexity, and decidability. No prior knowledge of von Neumann algebras will be necessary. Some of the work presented is joint with Ilijas Farah, Bradd Hart, David Sherman, and Thomas Sinclair.