Rigidity Properties of Precipitous Ideals

Brent Cody

Virginia Commonwealth University http://www.people.vcu.edu/~bmcody/

This is joint work with Sean Cox and Monroe Eskew

March 12, 2016

Outline

- Review of Precipitousness
- 2 A Rigid Saturated Ideal on $\omega_1 + \neg CH$
- Coding Forcing
- 4 A Rigid Presaturated Ideal on $\omega_1 + CH$

Outline

- Review of Precipitousness
- 2 A Rigid Saturated Ideal on $\omega_1 + \neg CH$
- Coding Forcing
- 4 A Rigid Presaturated Ideal on ω_1 + CH

Generic Large Cardinals

Large cardinal properties

- witnessed by elementary embeddings $j: V \to M$ defined in V
- witnessed by ultrafilters $U \in V$

Generic large cardinal properties

- witnessed by external embeddings $j:V\to M$ defined in some extension V[G]
- witnessed by ideals (or filters) $I \in V$
- can hold at small cardinals ω_1 , ω_2 , etc.

Generic Ultrapowers

Review of Precipitous Ideals:

Suppose I is an ideal on a regular cardinal κ .

- For $X, Y \subseteq \kappa$ let $X \sim_I Y$ iff $X \triangle Y \in I$.
- We can define a forcing

$$\mathbb{P} = P(\kappa)/I - \{ [\varnothing] \} = \{ [X]_I : X \subseteq \kappa \wedge X \not\sim_I \varnothing \}$$

where $[X]_I \leq [Y]_I$ iff $X \subseteq_I Y$.

Suppose *G* is *V*-generic for $P(\kappa)/I$.

- There is a V-ultrafilter $U_G \in V[G]$ extending the filter dual to I.
- The generic ultrapower $M = \text{Ult}(V, U_G) = \{[f]_G : f \in V \land \text{dom}(f) = \kappa\}$ may not be wellfounded.
- There is a generic ultrapower embedding $j_G: V \to M$ where $j_G(x) = [c_x]_G$.

Definition

A κ -complete ideal I on κ is **precipitous** if the corresponding generic ultrapower $j: V \to \text{Ult}(V, U_G)$ is wellfounded.

Precipitousness

Theorem (Jech-Magidor-Mitchell-Prikry, 1980)

If κ is a measurable cardinal then there is a forcing extension V[G] in which $\kappa = \omega_1^{V[G]}$ and there is a precipitous ideal on κ .

Proof.

- Let G be V-generic for $\mathbb{P}=\operatorname{Col}(\omega,<\kappa)$ and let j be an ultrapower by a normal measure on κ .
- $j(\mathbb{P}) = \operatorname{Col}(\omega, j(\kappa))^M \cong \operatorname{Col}(\omega, <\kappa) \times \operatorname{Col}(\omega, [\kappa, j(\kappa)))$
- Let H be V[G]-generic for $Col(\omega, [\kappa, j(\kappa)))$.
- j" G ⊆ H × G
- So j lifts to $j_H: V[G] \to M[G*H]$.
- j_H is the ultrapower by $U_H = \{X \in P(\kappa)^{V[G]} : \kappa \in j_H(X)\}.$
- $I = \{X \in P(\kappa)^{V[G]} : \Vdash_{i(\mathbb{P})/G} \kappa \notin j(X)\}$
- Why is I precipitous?
- In V[G], forcing with $P(\kappa)^{V[G]}/I$ is equivalent to forcing with $j(\mathbb{P})/G$.

In V[G], why is forcing with $P(\kappa)^{V[G]}/I$ equivalent to forcing with $j(\mathbb{P})/G$?

Define a homomorphism of boolean algebras

$$i: P(\kappa)^{V[G]} \to \operatorname{ro}(j(\mathbb{P})/G)$$

 $X \mapsto \|\kappa \in j_{\dot{H}}(X)\|.$

• The kernel of *i* is *I* so we get

$$i: P(\kappa)^{V[G]}/I \to \operatorname{ro}(i(\mathbb{P})/G).$$

• The range of *i* is dense.

The fact that forcing with $P(\kappa)^{V[G]}/I$ is equivalent to forcing with $j(\mathbb{P})/G$ is a special case of **Foreman's Duality Theorem**.

The Duality Theorem

Theorem (Foreman, 2013)

Suppose Z is a set and $\mathbb P$ is a forcing such that whenever $G\subseteq \mathbb P$ is V-generic, there is an ultrafilter U on Z such that V^Z/U is isomorphic to a transitive class M. Also assume that there are functions $f_{\mathbb P}, \langle f_p : p \in \mathbb P \rangle$ and g, such that

$$\Vdash_{\mathbb{P}}$$
 " $[f_{\mathbb{P}}]_U = \mathbb{P} \wedge (\forall p \in \mathbb{P})[f_p]_U = p \wedge [g]_U = \dot{G}$ ".

If $I = \{X \in P(\mathbb{Z}) : \Vdash_{\mathbb{P}} [id]_{\dot{U}} \notin j_{\dot{U}}(X)\}$, then there is a dense embedding $d : P(Z)/I \to \operatorname{ro}(\mathbb{P})$.

• Forcing with the ideal derived from a generic ultrapower embedding (i.e. forcing with $P(\kappa)/I$) is in many cases equivalent to the forcing which adds the embedding.

Outline

- Review of Precipitousness
- 2 A Rigid Saturated Ideal on $\omega_1 + \neg CH$
- Coding Forcing
- 4 A Rigid Presaturated Ideal on $\omega_1 + \mathrm{CH}$

Saturated and Presaturated Ideals

Definition

An ideal I on a regular cardinal κ is **saturated** if the boolean algebra $P(\kappa)/I$ has the κ^+ -chain condition.

- saturation \iff precipitousness.
- I saturated \implies forcing with $P(\kappa)/I$ preserves κ^+ .

Definition

An ideal I on a regular cardinal κ is **presaturated** if it is precipitous and forcing with $P(\kappa)/I$ preserves κ^+ .

Rigid Ideals

 \mathbb{P}_{max} forcing - Woodin was concerned with homogeneity/rigidity properties of $P(\omega_1)/I_{NS}$.

Definition

An ideal I on a regular cardinal κ is **rigid** if forcing with $P(\kappa)/I$ produces an extension V[G] in which there is a unique generic for $P(\kappa)/I$.

Theorem (Woodin, 1990s - Larson, 2002)

Assuming MA_{ω_1} , if I is a normal uniform saturated ideal on ω_1 , then I is rigid.

• Of course $MA_{\omega_1} \implies \neg CH$

Question

Is it consistent to have a normal uniform <u>rigid</u> saturated ideal on $\omega_1 + \mathrm{CH}$?

Outline

- Review of Precipitousness
- 2 A Rigid Saturated Ideal on $\omega_1 + \neg CH$
- Coding Forcing
- 4 A Rigid Presaturated Ideal on $\omega_1 + \mathrm{CH}$

The Number of Normal Measures

 $0 \le (\text{the number of normal measures on } \kappa) \le 2^{2^{\kappa}}$

Theorem (Kunen-Paris, 1971)

If κ is measurable then there is a forcing extension in which κ carries $2^{2^{\kappa}}$ normal measures.

Theorem (Apter-Hamkins-Cummings, 2007)

If κ is measurable then there is a forcing extension in which κ carries exactly κ^+ normal measures.

Theorem (Friedman-Magidor, 2009)

Assume GCH. Suppose κ is measurable and $\alpha \leqslant \kappa^{++}$ is a cardinal. Then in a cofinality-preserving forcing extension, κ carries exactly α normal measures.

Coding Forcing

Lemma (Friedman-Magidor, 2009)

Suppose κ is an inaccessible cardinal and G is V-generic for $\operatorname{Sacks}(\kappa)$. In V[G] there is a forcing $\operatorname{Code}(\kappa)$ such that if H is V[G]-generic for $\operatorname{Code}(\kappa)$, then in V[G*H] there is a unique V-generic filter for $\operatorname{Sacks}(\kappa)*\operatorname{Code}(\kappa)$.

The forcing $Code(\kappa)$...

- adds a club C, and
- this club codes the Sack-generic G, as well as the Code-generic C into the stationarity/nonstationarity of sets in a sequence $\vec{E} = \langle E_{\alpha} : \alpha < \kappa^+ \rangle$ of ground model stationary sets.

Outline

- Review of Precipitousness
- 2 A Rigid Saturated Ideal on $\omega_1 + \neg CH$
- Coding Forcing
- **4** A Rigid Presaturated Ideal on $\omega_1 + \mathrm{CH}$

Coding the Lévy-Collapse

Suppose κ is an inaccessible cardinal and let $\mathbb{P} = \operatorname{Col}(\omega, <\kappa)$.

Let G be a V-generic for \mathbb{P} . Then $\kappa = (\omega_1)^{V[G]}$.

Goal: Working in V[G], define a forcing \mathbb{Q} such that if H is V[G]-generic for \mathbb{Q} , then there is a unique V-generic filter for $\mathbb{P} * \mathbb{Q}$ in V[G * H].

- This situation is similar to the Friedman-Magidor lemma.
- We want to code the Lévy-collapse generic into the stationarity/nonstationarity of sequence of sets.

Go back to working in V momentarily:

- Let $\vec{\eta}=\langle \eta_\alpha:\alpha<\kappa\rangle$ enumerate the uncountable regular cardinals less than κ .
- For each $\alpha < \kappa$, let $E_{\alpha} = \operatorname{cof}(\eta_{\alpha}) \cap (\eta_{\alpha}, \kappa)$.
- $\vec{E} = \langle E_{\alpha} : \alpha < \kappa \rangle$
- Fix a bijection $f : \kappa \to \operatorname{Col}(\omega, <\kappa)$ with $f \in V$.
- Let $W, X, Y, Z : \kappa \to \kappa$ be four cofinal functions with pairwise disjoint ranges.

Remark

In V[G], each E_{α} is a stationary subset of $\kappa = \omega_1^{V[G]}$ since \mathbb{P} is κ -c.c.

- $f: \kappa \to \operatorname{Col}(\omega, <\kappa)$ is a bijection
- $W, X, Y, Z : \kappa \to \kappa$ are cofinal functions with disjoint ranges.
- $\vec{E} = \langle E_{\alpha} : \alpha < \kappa \rangle$ seq. of stationary sets in V[G].

Definition

Working in V[G], conditions in $\mathbb{Q} = \operatorname{Code}(\kappa, \vec{E})$ are closed bounded subsets of $\kappa = \omega_1^{V[G]}$ ordered by $d \leqslant c$ iff

- \bigcirc d is an end extension of c.
- ② For $i < \kappa$, if $f(i) \in G$ then $d \setminus c$ is disjoint from $E_{W(i)}$ and if $f(i) \notin G$ then $d \setminus c$ is disjoint from $E_{X(i)}$.
- **③** For $i \leq \max(c)$, if $i \in c$ then $d \setminus c$ is disjoint from $E_{Y(i)}$ and if $i \notin c$ then $d \setminus c$ is disjoint from $E_{Z(i)}$.
 - (2) codes G into the stationarity/nonstationarity of the sets in \vec{E} .
- (3) codes the generic for $\mathbb{Q} = \operatorname{Code}(\kappa, \vec{E})$ into the stationarity/nonstationarity of the sets in \vec{E} .
- $\operatorname{Code}(\kappa, \vec{E})$ is $<\kappa$ -distributive in V[G].

Lemma

Suppose κ is inaccessible, G*H is V-generic for $\mathbb{P}*\mathbb{Q}=\operatorname{Col}(\omega,<\kappa)*\operatorname{Code}(\kappa,\vec{E})$ and let $C=\bigcup H$. Then in V[G*H] we have

- For $i < \kappa$, $f(i) \in G$ iff $E_{W(i)}$ is nonstationary and $f(i) \notin G$ iff $E_{X(i)}$ is nonstationary.
- **②** For $i < \kappa$, $i \in C$ iff $E_{Y(i)}$ is nonstationary and $i \notin C$ iff $E_{Z(i)}$ is nonstationary.
- **3** There is a unique V-generic filter for $\operatorname{Col}(\omega, <\kappa) * \operatorname{Code}(\kappa, \vec{E})$ (in V[G*H]).
- Idea: If there were multiple generics for $\operatorname{Col}(\omega, <\kappa) * \operatorname{Code}(\kappa, \vec{E})$ in V[G*H], this would lead to an intermediate extension $V \subseteq V[G'*H'] \subseteq V[G*H]$ such that some set X is nonstationary in V[G'*H'] and stationary in V[G*H].

A Rigid Precipitous Ideal + CH

Theorem (C.-Cox-Eskew, 2016)

Suppose κ is huge with target λ . There is a forcing extension in which there is a rigid precipitous ideal on $[\lambda]^{\omega_1}$ and GCH holds.

Proof.

- WLOG assume GCH and let $j: V \to M$ be an ultrapower witness that κ is huge with target λ .
- Let G * H be V-generic for $\mathbb{P} * \mathbb{Q} = \operatorname{Col}(\omega, <\kappa) * \operatorname{Code}(\kappa, \vec{E})$.
- We will argue that there is a rigid precipitous ideal on $[\lambda]^{\kappa} = ([\lambda]^{\omega_1})^{V[G*H]}$.

$$I = \{X \in P([\lambda]^{\omega_1})^{V[G*H]} : \Vdash_{j(\mathbb{P})/i[G*H]*j(\mathbb{Q})/d} ([\operatorname{id}]_{\dot{U}} \notin j(X))\}$$

• We need to lift j to V[G * H].

Extend j **to** V[G]:

- Absorption: there is a complete embedding $i: \mathbb{P} * \mathbb{Q} \to j(\mathbb{P}) = j(\operatorname{Col}(\omega, < j(\kappa)))$ extending the identity id: $\mathbb{P} \to j(\mathbb{P})$.
- Let $\hat{G} \subseteq j(\mathbb{P})/i[G*H]$ be V[G*H]-generic.
- Then $V[G * H * \hat{G}]$ is an extension by $j(\mathbb{P})$.
- j" $G \subseteq \hat{G}$
- Thus j lifts to $j: V[G] \to M[\hat{G}]$.

Next lift j through $H \subseteq \mathbb{Q} = \operatorname{Code}(\kappa, \vec{E})$:

- j[H] = H since conditions in \mathbb{Q} have size less than the critical point of j.
- Clearly $d = (\bigcup j[H]) \cup \{\kappa\}$ is a condition in $j(\mathbb{Q})$.
- We must show that d is a master condition—i.e. that d is stronger than every element of j[H].
- This will involve checking that adding κ to the top of $\bigcup j[H]$ doesn't cause us to hit a stationary set we are supposed to be avoiding.
- We have $j(\vec{\eta}) = \langle \bar{\eta}_{\alpha} : \alpha < j(\kappa) \rangle$ and $j(\vec{E}) = \langle \bar{E}_{\alpha} : \alpha < j(\kappa) \rangle$ where
- $\bar{E}_{\alpha} = [\operatorname{cof}(\bar{\eta}_{\alpha}) \cap (\bar{\eta}_{\alpha}, j(\kappa))]^{V}$ since $M^{j(\kappa)} \cap V \subseteq M$.
- We have $\kappa \notin \bar{E}_{\alpha}$ for all $\alpha < j(\kappa)$.
- Thus d extends every element of $\bigcup j''H = H$.
- Let \hat{H} be $V[G * H * \hat{G}]$ -generic for $j(\mathbb{Q})/d$.
- j lifts to $j: V[G*H] \rightarrow M[\hat{G}*\hat{H}]$.

I is a rigid precipitous ideal on $[\lambda]^{\kappa} = ([\lambda]^{\omega_1})^{V[G*H]}$:

$$I = \{X \in P([\lambda]^{\omega_1})^{V[G*H]} : \Vdash_{j(\mathbb{P})/i[G*H]*j(\mathbb{Q})/d} ([\mathrm{id}]_{\dot{U}} \notin j(X))\}.$$

• Since $M^{j(\kappa)} \cap V \subseteq M$, we have $(j(\kappa)$ is measurable) V and

$$\mathbb{R} = j(\mathbb{P}) * j(\mathbb{Q}) = [\operatorname{Col}(\omega, < j(\kappa)) * \operatorname{Code}(j(\kappa), j(\vec{E}))]^{V}$$

- We can view $V[G * H * \hat{G} * \hat{H}]$ as a forcing extension of V obtained by forcing with \mathbb{R} .
- By the lemma, in $V[G * H * \hat{G} * \hat{H}]$ there is a unique V-generic filter for \mathbb{R} .
- Thus, there is only one way to extend the embedding j to have domain V[G*H].

• By Foreman's duality theorem, forcing over V[G*H] with $j(\mathbb{P})/i[G*H]*j(\mathbb{Q})/d$ is equivalent to forcing over V[G*H] with $P([\lambda]^{\omega_1})/I$ where

$$I = \{X \in P([\lambda]^{\omega_1})^{V[G*H]} : \Vdash_{j(\mathbb{P})/i[G*H]*j(\mathbb{Q})/d} ([\mathrm{id}]_{\dot{U}} \notin j(X))\}.$$

• Thus, forcing with $P([\lambda]^{\omega_1})/I$ over V[G*H] produces an extension in which there is a unique generic for $P([\lambda]^{\omega_1})/I$.

_

A Rigid Presaturated Ideal on $\omega_1 + \mathrm{CH}$

Theorem (C.-Cox-Eskew, 2016)

Suppose κ is almost huge. Then there is a forcing extension in which there is a rigid presaturated ideal on ω_1 and GCH holds.

- Let $j: V \to M$ be an embedding with critical point κ and $M^{< j(\kappa)} \cap V \subseteq M$ obtained from an almost-huge tower.
- Let $G*(H\times K)\subseteq \mathbb{P}*\operatorname{Col}(\kappa, < j(\kappa))*\operatorname{Code}(\kappa, \vec{E})$ be V-generic, so that $\kappa=\omega_1$.
- Generically lift j to $V[G * (H \times K)]$.
- The lift is the ultrapower by

$$U = \{ X \in P(\kappa)^{V[G*(H\times K)]} : \kappa \in j(X) \}.$$

• $I = \{X \in P(\kappa)^{V[G*(H \times K)]} : \Vdash \kappa \notin j_{\dot{U}}(X)\}$ is a rigid presaturated ideal on ω_1 .

Question

Is it consistent to have a saturated ideal on $\omega_1 + CH$?