Namba-like singularizations of successor cardinals

(Bukovský-)Namba forcing preserves $\kappa = \aleph_1$ and changes the cofinality of \aleph_2 to ω. We lift this to cardinals $\kappa > \aleph_1$. Assuming a measurable cardinal λ we construct models over which there is a further "Namba-like" forcing which preserves all cardinals $\leq \kappa$ and changes the cofinality of κ^+ to ω. Cofinalities different from ω can also be achieved by starting from measurable cardinals of sufficiently strong Mitchell order. Using core model theory one can show that the respective measurable cardinals are also necessary. This is joint work with Dominik Adolf (Münster).

Peter Koepke, Mathematical Institute, University of Bonn, Germany
CUNY Logic Workshop
New York City, March 22, 2013
The Jensen Covering Theorem for L

Assume that $\emptyset^\# \text{ does not exist.}$

Then for every $x \subseteq \text{Ord}$ there exists $z \in L$ such that

$$x \subseteq z \quad \text{and} \quad \text{card}(z) \leq \text{card}(x) + \aleph_1$$
Where does \aleph_1 come from?
Where does \aleph_1 come from?
Where does \aleph_1 come from?

$\bar{y} = L_{\bar{\alpha}}$

Ord

$y \prec (L, \in)$
Where does \aleph_1 come from?
Where does \(\aleph_1 \) come from?

By ultrapower-like techniques, \(\pi \) can be extended to \(L_{\alpha'} \supseteq L_{\alpha} \).
Where does \aleph_1 come from?

By ultrapower-like techniques, π can be extended to $L_{\alpha'} \supseteq L_\alpha$

Dichotomy:

- π can be extended to a $\pi': L \rightarrow L$, and then $0^#$ exists

- π can only be extended to a maximal $\pi': L_{\alpha'} \rightarrow L_{\alpha''}$, and then one can define a covering set $z \supseteq x$ over $L_{\alpha''}$
Where does \aleph_1 come from?

By ultrapower-like techniques, π can be extended to $L_{\alpha'} \supseteq L_\alpha$

Dichotomy:

- π can be extended to a $\pi': L \to L$, and then $0^\#$ exists

- π can only be extended to a maximal $\pi': L_{\alpha'} \to L_{\alpha''}$, and then one can define a covering set $z \supseteq x$ over $L_{\alpha''}$

Problem: to ensure that the codomains to π' are wellfounded, Jensen includes \aleph_1 many possible counterexamples to wellfoundedness (vicious sequences) into the elementary substructure $y, x \subseteq y < L$.
Where does \(\aleph_1 \) come from?

\[
\bar{y} = L_\alpha
\]
Namba forcing

(Assuming the continuum hypothesis) there is a forcing P_{Namba} such that

1. $\mathcal{P}(\aleph_0)^V[G_{\text{Namba}}] = \mathcal{P}(\aleph_0)^V$

2. $\aleph_1^{V[G_{\text{Namba}}]} = \aleph_1^V$

3. $\text{cof}^V[G_{\text{Namba}}](\aleph_2^V) = \aleph_0$
Namba forcing

(Assuming the continuum hypothesis) there is a forcing P_{Namba} such that

- $\mathcal{P}(\aleph_0)^V[G_{\text{Namba}}] = \mathcal{P}(\aleph_0)^V$
- $\aleph_1^{V[G_{\text{Namba}}]} = \aleph_1^V$
- $\text{cof}^{V[G_{\text{Namba}}]}(\aleph_2^V) = \aleph_0$

$\lambda = \aleph_2^V$, $\text{cof}^{V[G]}(\lambda) = \aleph_0$

$\kappa = \aleph_1^V = \aleph_1^{V[G]}$

\aleph_0
Namba forcing
Namba forcing necessitates \aleph_1 in the Covering Theorem

Let $x \subseteq \lambda$ be cofinal, $\text{otp}(x) = \aleph_0$, $x \in L[G_{\text{Namba}}]$
Namba forcing necessitates \aleph_1 in the Covering Theorem

Let $x \subseteq \lambda$ be cofinal, $\text{otp}(x) = \aleph_0$, $x \in L[G_{\text{Namba}}]$

Assume that x can be covered by a countable $z \in L : x \subseteq z \subseteq \text{Ord}$

Then $\text{otp}(z) < \aleph_1 < \lambda$
Namba forcing necessitates \aleph_1 in the Covering Theorem

Let $x \subseteq \lambda$ be cofinal, $\text{otp}(x) = \aleph_0$, $x \in L[G_{Namba}]$

Assume that x can be covered by a countable $z \in L : x \subseteq z \subseteq \text{Ord}$

Then $\text{otp}(z) < \aleph_1 < \lambda$

cof$_{L}(\lambda) < \lambda$, although λ is regular in L

Contradiction
Can Namba forcing be generalized to cardinals κ bigger than \aleph_1?

Namba forcing P_{Namba}:

- $\mathcal{P}(\aleph_0)^{V[G_{\text{Namba}}]} = \mathcal{P}(\aleph_0)^V$

- $\aleph_1^{V[G_{\text{Namba}}]} = \aleph_1^V$

- $\text{cof}^{V[G_{\text{Namba}}]}(\aleph_2^V) = \aleph_0$

- $\lambda = \aleph_2^V$, $\text{cof}^{V[G]}(\lambda) = \aleph_0$

- $\kappa = \aleph_1^V = \aleph_1^{V[G]}$

- \aleph_0
Can Namba forcing be generalized to cardinals κ bigger than \aleph_1?

For uncountable regular κ let NB_κ denote the property: there is a forcing P such that:

- $P(\kappa)^{V[G]} = P(\kappa)^V$
- κ is regular in $V[G]$
- $\text{cof}^{V[G]}(\kappa^+) < \kappa$

$\lambda = \kappa^+, \text{cof}^{V[G]}(\lambda) < \kappa$

κ

\aleph_0
NB$_\kappa$ implies the existence of $0^#$

Let $x \subseteq \lambda$ be cofinal, otp$(x) < \kappa$, $x \in V[G]$
NB$_\kappa$ implies the existence of $0^#$

Let $x \subseteq \lambda$ be cofinal, $\text{otp}(x) < \kappa$, $x \in V[G]$

Assume that x can be covered by $z \in L$:

\[x \subseteq z \subseteq \text{Ord} \quad \text{and} \quad \text{card}(z) \leq \text{card}(x) + \aleph_1 \]
\(\textbf{NB}_\kappa \) implies the existence of \(0^# \)

Let \(x \subseteq \lambda \) be cofinal, \(\text{otp}(x) < \kappa \), \(x \in V[G] \)

Assume that \(x \) can be covered by \(z \in L \) :

\[
x \subseteq z \subseteq \text{Ord} \quad \text{and} \quad \text{card}(z) \leq \text{card}(x) + \aleph_1
\]

Then \(\text{otp}(z) < \kappa < \lambda \)
NB$_\kappa$ implies the existence of 0#

Let $x \subseteq \lambda$ be cofinal, otp$(x) < \kappa$, $x \in V[G]$

Assume that x can be covered by $z \in L$:

$$x \subseteq z \subseteq \text{Ord and card}(z) \leq \text{card}(x) + \aleph_1$$

Then otp$(z) < \kappa < \lambda$

$\cof^L(\lambda) < \lambda$, although λ is regular in L

Contradiction
NB$_\kappa$ implies the existence of 0#$^\#$

Let $x \subseteq \lambda$ be cofinal, $\text{otp}(x) < \kappa$, $x \in V[G]$

Assume that x can be covered by $z \in L$:

$$x \subseteq z \subseteq \text{Ord} \quad \text{and} \quad \text{card}(z) \leq \text{card}(x) + \aleph_1$$

Then $\text{otp}(z) < \kappa < \lambda$

$\text{cof}^L(\lambda) < \lambda$, although λ is regular in L

Contradiction

Hence Covering by L does not hold and 0#$^\#$ exists
The Dodd-Jensen Covering Theorem for the core model K_{DJ}

Assume that there is no inner model with a measurable cardinal.

Then for every $x \subseteq \text{Ord}$ there exists $z \in K_{DJ}$ such that

$$x \subseteq z \text{ and } \text{card}(z) \leq \text{card}(x) + \aleph_1$$
The Dodd-Jensen Covering Theorem for the core model K_{DJ}. Thus NB_κ implies the existence of an inner model with a measurable cardinal.

Assume that there is no inner model with a measurable cardinal.

Then for every $x \subseteq \text{Ord}$ there exists $z \in K_{DJ}$ such that

$$x \subseteq z \text{ and } \text{card}(z) \leq \text{card}(x) + \aleph_1$$
Forcing \mathbf{NB}_κ from a measurable cardinal

Let λ be a measurable cardinal

Use Prikry forcing to make $\text{cof}(\lambda) = \aleph_0$

Use Levy forcing to make $\lambda = \kappa^+$
Forcing NB_κ from a measurable cardinal

Let λ be a measurable cardinal

Use Prikry forcing to make $\text{cof}(\lambda) = \aleph_0$

Use Levy forcing to make $\lambda = \kappa^+$

Problems

Prikry forcing singularizes λ so that λ is not inaccessible for Levy forcing

Levy forcing destroys the measurability of λ so that Prikry forcing does not work
Forcing NB_κ from a measurable cardinal

Prikry forcing
Forcing NB_κ from a measurable cardinal

Define Q: Prikry forcing, combined with Levy collapses on the tree
Forcing \mathbf{NB}_κ from a measurable cardinal

Define Q: Prikry forcing, combined with Levy collapses on the tree

Union H of Levy collapses along generic branch is V-generic for $\text{Col}(\kappa, < \lambda)$
Forcing NB_κ from a measurable cardinal

Define Q: Prikry forcing, combined with Levy collapses on the tree

Union H of Levy collapses along generic branch is V-generic for $\text{Col}(\kappa, < \lambda)$

Let G_Q be V-generic for Q

Then

- $\mathcal{P}(< \kappa)^{V[G_Q]} = \mathcal{P}(< \kappa)^V$
- κ is regular in $V[G_Q]$
- $\lambda = \kappa^+^{V[H]}$
- $\text{cof}^{V[G_Q]}(\lambda) = \aleph_0$
- $V[G_Q] = V[H][G_Q/H]$
A general factorization result

Let R be a forcing that does not add bounded subsets of an inaccessible λ (like Prikry forcing for λ). Let G_R be V-generic for R. Let H be $V[G_R]$-generic for $\text{Col}(\kappa, < \lambda)^{V[G_R]}$.

Then

$$\bar{H} = H \cap \text{Col}(\kappa, < \lambda)^V = H \cap V$$

is V-generic for $\text{Col}(\kappa, < \lambda)^V$
A general factorization result

Let R be a forcing that does not add bounded subsets of an inaccessible λ (like Prikry forcing for λ). Let G_R be V-generic for R. Let H be $V[G_R]$-generic for $\text{Col}(\kappa, < \lambda)^{V[G_R]}$.

Then

$$\bar{H} = H \cap \text{Col}(\kappa, < \lambda)^V = H \cap V$$

is V-generic for $\text{Col}(\kappa, < \lambda)^V$

Hence

$$V[G_R][H] = V[\bar{H}][(G_R \times H)/\bar{H}]$$
Forcing NB_κ from a measurable cardinal

$V[G_{\text{Prikry}}][H] = V[\bar{H}][G_{\text{Prikry}} \times H]/\bar{H}$ and hence

- $\mathcal{P}(\kappa)^{V[G_{\text{Prikry}}][H]} = \mathcal{P}(\kappa)^V$

- κ is regular in $V[G_{\text{Prikry}}][H]$

- $\lambda = \kappa^{+^{V[H]}}$

- $\text{cof}^{V[G_{\text{Prikry}}][H]}(\lambda) = \aleph_0$

Hence $V[\bar{H}]$ satisfies NB_κ with $\text{Prikry} \ast \text{Col}(\kappa, < \lambda)/G_{\text{Prikry}} \times H$
The V-genericity of \bar{H}

Let $\bar{D} \in V$ be dense in $Col(\kappa, < \lambda)^V$.
The V-genericity of \bar{H}

Let $\bar{D} \in V$ be dense in $\text{Col}(\kappa, < \lambda)^V$.

There is $\mu < \lambda$ with $\text{cof}^V(\mu) \geq \kappa$ such that $\bar{D} \cap V_\mu$ is dense in $\text{Col}(\kappa, < \lambda)^V \cap V_\mu$.
The V-genericity of \bar{H}

Let $\bar{D} \in V$ be dense in $\text{Col}(\kappa, < \lambda)^V$.

There is $\mu < \lambda$ with $\text{cof}^V(\mu) \geq \kappa$ such that $\bar{D} \cap V_\mu$ is dense in $\text{Col}(\kappa, < \lambda)^V \cap V_\mu$.

Let $D = \{ p \in \text{Col}(\kappa, < \lambda)^{V[G_R]} | p \cap V_\mu \in \bar{D} \} \in V[G_R]$.

D is dense in $\text{Col}(\kappa, < \lambda)^{V[G_R]}$.
The \(V \)-genericity of \(\vec{H} \)

Let \(\vec{D} \in V \) be dense in \(\text{Col}(\kappa, < \lambda)^V \).

There is \(\mu < \lambda \) with \(\text{cof}^V(\mu) \geq \kappa \) such that \(\vec{D} \cap V_\mu \) is dense in \(\text{Col}(\kappa, < \lambda)^V \cap V_\mu \).

Let \(D = \{ p \in \text{Col}(\kappa, < \lambda)^{V[G_R]} \mid p \cap V_\mu \in \vec{D} \} \in V[G_R] \)

\(D \) is dense in \(\text{Col}(\kappa, < \lambda)^{V[G_R]} \).

By \(V[G_R] \)-genericity take \(p \in H \cap D \).

Then \(p \cap V_\lambda \in \vec{D} \cap \vec{H} \neq \emptyset \)
Thank You!