Virtual large cardinals

Victoria Gitman

vgitman@nylogic.org
http://boolesrings.org/victoriagitman

Set Theory Day
March 11, 2016
This is joint work with Ralf Schindler (University of Münster).
Virtual large cardinals

Suppose \mathcal{A} is a very large cardinal property, e.g.,
- supercompact,
- extendible,
- n-huge*,
- rank-into-rank,
characterized by the existence of "suitable" set-sized embeddings.
(Certain closure requirements are not allowed.)

We say that a cardinal is virtually \mathcal{A} if the embeddings of V-structures characterizing \mathcal{A} exist in set-forcing extensions.

Virtual large cardinals are mini versions of their actual counterparts.
- Silver indiscernibles are virtual large cardinals.
- Virtual large cardinals are situated between ineffables and $0^#$.
- Virtual large cardinals are downward absolute to L.

Victoria Gitman

Virtual large cardinals

Set Theory Day 3 / 16
Generic versus virtual large cardinals

Generic large cardinals

Suppose \mathcal{A} is a large cardinal property characterized by existence of elementary embeddings $j : V \to M$ (with additional properties).

A cardinal is generically \mathcal{A} if the embeddings $j : V \to M$ characterizing \mathcal{A} exist in set-forcing extensions (possibly with $M \not\subseteq V$).

- δ is generically supercompact if for every $\lambda > \delta$ in some set-forcing extension there is an elementary $j : V \to M$ with $\text{crit}(j) = \delta$ and $j'' \lambda \in M$.
- A tiny cardinal such as ω_1 can be generically \mathcal{A}.
- Consistency strength of a generically \mathcal{A} cardinal is usually on par with \mathcal{A}.

Virtual large cardinals

Suppose \mathcal{A} is a large cardinal property characterized by existence of “suitable” set-sized embeddings.

A cardinal is virtually \mathcal{A} if the embeddings of V-structures characterizing \mathcal{A} exist in set-forcing extensions.

- Virtual large cardinals are actual large cardinals.
- Consistency strength of a virtually \mathcal{A} cardinal is usually much weaker than \mathcal{A}.
Absoluteness Lemma for embeddings on countable structures

Suppose B and A are (first-order) structures in the same language.

Lemma: (Absoluteness Lemma for embeddings on countable structures)
Suppose B is countable and B elementarily embeds into A. If W is a (set or class) model of (a sufficiently large fragment of) ZFC such that

- $B, A \in W$,
- B is countable in W,

then B elementarily embeds into A in W.

Proof:

- Enumerate $B = \{ b_n \mid n < \omega \}$ in W. Let $B \upharpoonright n = \{ b_i \mid i < n \}$.
- Let T be the tree of all partial finite isomorphisms $f : B \upharpoonright n \rightarrow A$ ordered by extension.

B elementarily embeds into A if and only if T has a cofinal branch.

T is ill-founded in V, and hence in W. □
When do embeddings exist in a set-forcing extension? Part I

Suppose \(B \) and \(A \) are (first-order) structures in the same language.

Theorem: TFAE

1. \(B \) elementarily embeds into \(A \) in some set-forcing extension.
2. \(B \) elementarily embeds into \(A \) in \(V^{\text{Coll}(\omega, B)} \).

Proof:

(2) \(\Rightarrow \) (1): Trivial.

(1) \(\Rightarrow \) (2): Suppose a set-forcing extension \(V[G] \) has an elementary \(j : B \rightarrow A \).

- Let \(|B|^V = \delta \).
- Consider a further extension \(V[G][H] \) by \(\text{Coll}(\omega, \delta) \).
- \(j \in V[G][H] \) and \(B \) is countable in \(V[G][H] \).
- \(V[H] \subseteq V[G][H] \) has some elementary \(j^* : B \rightarrow A \) (by Absoluteness Lemma). \(\square \)
When do embeddings exist in a set-forcing extension? Part II

Suppose B and A are (first-order) structures in the same language.

Let $G(B, A)$ be an ω-length Ehrenfeucht-Fraïssé type game:

- **Stage n:** player I plays some $b_n \in B$ and player II plays some $a_n \in A$.
- **Player II wins** if for every $n \in \omega$ and formula $\varphi(x_0, \ldots, x_n)$,
 $$B \models \varphi(b_0, \ldots, b_n) \leftrightarrow A \models \varphi(a_0, \ldots, a_n),$$
 and otherwise player I wins.
- If player II loses, she must do so in finitely many steps.
- $G(B, A)$ is closed, and hence determined by the Gale-Stewart Theorem.

Theorem: TFAE

1. Player II has a winning strategy in $G(B, A)$.
2. B elementarily embeds into A in $V^{\text{Coll}(\omega, B)}$.

Proof:

$(1) \Rightarrow (2)$: A winning strategy for player II, remains winning in $V^{\text{Coll}(\omega, B)}$ because no new finite sequences are added.

$(2) \Rightarrow (1)$: Fix $p \models "\tau : \bar{B} \rightarrow \bar{A} \text{ is an elementary embedding}"$.

- To every finite \vec{b} from B, associate $p_{\vec{b}} \models \tau(\vec{b}) = \vec{a}$ below p so that:
 - if \vec{b}' extends \vec{b}, then $p_{\vec{b}'} \leq p_{\vec{b}}$.
- A winning strategy for player II: play \vec{a} in response to \vec{b}. □

Victoria Gitman
Virtual large cardinals
Set Theory Day 7 / 16
Remarkable cardinals

Definition: (Schindler) A cardinal κ is remarkable if for every $\lambda > \kappa$, there is $\bar{\lambda} < \kappa$ such that in some set-forcing extension there is an elementary $j : V_{\bar{\lambda}} \rightarrow V_{\lambda}$ with $j(\text{crit}(j)) = \kappa$.

Theorem: (Schindler, '00) The assertion that the theory of $L(\mathbb{R})$ cannot be changed by proper forcing is equiconsistent with a remarkable cardinal.

Theorem: (Schindler, '15) The weak Proper Forcing Axiom, wPFA, is equiconsistent with a remarkable cardinal.

- wPFA implies PFA_{\aleph_2} (PFA for antichains of size at most \aleph_2).
- wPFA is consistent with \square_δ for $\delta \geq \omega_2$, and hence wPFA does not imply PFA_{\aleph_3}.

Theorem: (Magidor, '71) A cardinal κ is supercompact if and only if for every $\lambda > \kappa$, there is $\bar{\lambda} < \kappa$ such that there is an elementary $j : V_{\bar{\lambda}} \rightarrow V_{\lambda}$ with $j(\text{crit}(j)) = \kappa$.

Remarkable cardinals are virtually supercompact!
Various virtual large cardinals

Definition:
- A cardinal κ is virtually extendible if for every $\alpha > \kappa$, in a set-forcing extension there is an elementary $j : V^V_\alpha \rightarrow V^V_\beta$ with $\text{crit}(j) = \kappa$ and $j(\kappa) > \alpha$.
- A cardinal κ is virtually n-huge* if for some $\alpha > \kappa$, in a set-forcing extension there is an elementary $j : V^V_\alpha \rightarrow V^V_\beta$ with $\text{crit}(j) = \kappa$ and $j^n(\kappa) < \alpha$.
- A cardinal κ is virtually rank-into-rank if for some $\alpha > \kappa$, in a set-forcing extension there is an elementary $j : V^V_\alpha \rightarrow V^V_\beta$ with $\text{crit}(j) = \kappa$.

Proposition: (Beyond Kunen’s Inconsistency) A set-forcing extension can have an elementary $j : V^V_\alpha \rightarrow V^V_\alpha$ with $\alpha \gg \lambda$, the supremum of the critical sequence.

Proof: If κ is a Silver indiscernible and $\alpha \gg \kappa$ is uncountable in V, then there is an elementary $j : L^V_\alpha \rightarrow L^V_\alpha$ with $\alpha \gg \lambda$, the supremum of the critical sequence.

Aside: n-huge*-cardinals

Problem: n-huge cardinals do not have a suitable embedding characterization for virtualization.

Definition: A cardinal κ is n-huge* if for some $\alpha > \kappa$, there is $j : V^V_\alpha \rightarrow V^V_\beta$ with $\text{crit}(j) = \kappa$ and $j^n(\kappa) < \alpha$.

Proposition: An $n + 1$-huge cardinal is n-huge* and an n-huge* cardinal is an n-huge limit of n-huge cardinals.

Proof:
- If κ is $n + 1$-huge, then there is $j : V^V_{j^n(\kappa)+1} \rightarrow V^V_{j^{n+1}(\kappa)+1}$.
- If κ is n-huge*, then there are cardinals $\kappa = \lambda_0 < \lambda_1 < \cdots < \lambda_n = \lambda$ and a κ-complete normal ultrafilter U over $P(\lambda)$ such that for each $i < n$,
 \[
 \{x \in P(\lambda) \mid \text{ot}(x \cap \lambda_{i+1}) = \lambda_i \} \in U.
 \]
The hierarchy of virtual large cardinals

Proposition:
- A virtually extendible cardinal is a remarkable limit of remarkable cardinals.
- If κ is virtually huge*, then V_κ is a model of proper class many virtually extendible cardinals.
- If κ is virtually $n+1$-huge*, then V_κ is a model of proper class many virtually n-huge* cardinals.
- If κ is virtually rank-into-rank, then for every $n \in \omega$, V_κ is a model of proper class many virtually n-huge* cardinals.
\textbf{\(\alpha\)-iterable cardinals}

\textbf{Definition:} A \textit{weak \(\kappa\)-model} (for a cardinal \(\kappa\)) is a transitive \(M \models \text{ZFC}^-\) of size \(\kappa\) and height above \(\kappa\).

Suppose \(M\) is a weak \(\kappa\)-model.

\textbf{Proposition:} TFAE.

- There exists an elementary \(j : M \rightarrow N\) with \(\text{crit}(j) = \kappa\).
- There exists an \(M\)-ultrafilter \(U\) with a well-founded ultrapower.
 - \(U\) is an \(M\)-ultrafilter if \(\langle M, \in, U \rangle \models U\) is a normal ultrafilter.
 - \(U = \{ A \in M \mid \kappa \in j(A) \}\).

\textbf{Definition:} An \(M\)-ultrafilter \(U\) is \textit{weakly amenable} if for every \(X \in M\) with \(|X|^M \leq \kappa\), \(X \cap U \in M\).

- \(U\) is partially internal to \(M\).
- Weak amenability is needed to iterate the ultrapower construction.

\textbf{Definition:} (G.) A cardinal \(\kappa\) is \textit{\(\alpha\)-iterable} \((1 \leq \alpha \leq \omega_1)\) if every \(A \subseteq \kappa\) is contained in a weak \(\kappa\)-model \(M\) for which there exists a weakly amenable \(M\)-ultrafilter on \(\kappa\) with \(\alpha\)-many well-founded iterated ultrapowers.
\(\alpha\)-iterable cardinals in the hierarchy

Theorem: (G., Welch, ’08)

- A 1-iterable cardinal is a limit of completely ineffable cardinals.
- An \(\alpha\)-iterable cardinal is a limit of \(\beta\)-iterable cardinals for every \(\beta < \alpha\).
- Suppose \(\alpha\) is additively indecomposable.
 - An \(\alpha\)-Erdős cardinal implies the consistency of a proper class of \(\beta\)-iterable cardinals for every \(\beta < \alpha\).
 - An \(\alpha + 1\)-iterable cardinal implies the consistency of an \(\alpha\)-Erdős cardinal.
Virtual large cardinals in the hierarchy

Theorem: (G., Schindler, ’15)

- A remarkable cardinal is a 1-iterable limit of 1-iterable cardinals.
- If κ is 2-iterable, then V_κ is a model of proper class many virtually extendible cardinals.
- A virtually n-huge* cardinal is an $n + 1$-iterable limit of $n + 1$-iterable cardinals.
- If κ is $n + 2$-iterable, then V_κ is a model of proper class many virtually n-huge* cardinals.
- A virtually rank-into-rank cardinal is an ω-iterable limit of ω-iterable cardinals.
- An $\omega + 1$-iterable cardinal implies the consistency of a virtually rank-into-rank cardinal.
Applications

Let \(C^{(n)} \) be the class club of ordinals \(\alpha \) such that \(V_\alpha \prec \Sigma_n V \).

Definition: (Bagaria) A cardinal \(\kappa \) is \(C^{(n)} \)-extendible if for every \(\alpha > \kappa \), there is an extendibility embedding \(j \) with \(j(k) \in C^{(n)} \).

Vopěnka’s Principle: For every proper class \(C \) of structures of the same type, there are \(B \neq A \), both in \(C \), such that \(B \) elementarily embeds into \(A \).

Generic Vopěnka’s Principle: (Bagaria, G., Schindler) For every proper class \(C \) of structures of the same type, there are \(B \neq A \), both in \(C \), such that \(B \) elementarily embeds into \(A \) in some set-forcing extension.

Theorem: (Bagaria, G., Schindler, ’15)

- Generic Vopěnka’s Principle for \(\Pi_1 \)-definable classes is equiconsistent with a proper class of remarkable cardinals.
- Generic Vopěnka’s Principle for \(\Pi_n \)-definable classes \((n \geq 2) \) is equiconsistent with a proper class of virtually \(C^{(n)} \)-extendible cardinals.
Questions

Question: Does a virtually rank-into-rank cardinal imply the consistency of an ω-Erdős cardinal?

Question: (vague) Can we define something akin to an algebra of embeddings for the virtually rank-into-rank cardinals?

Question: Applications?
Thank you!